Thermochimica Acta, 133 (1988) 33-38 33
Elsevier Science Publishers B.V., Amsterdam

THE STABILITY OF YBaZCu3Ox IN DIFFERENT ATMOSPHERES, BY TGA
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ABSTRACT

It has been generally accepted that oxygen exchange in YBaZCu3ox is
rapid and reversible above about 400°C for 6<x<7. On the other hand, for
x<6 and at temperatures above about 950°C, irreversible changes take place.
This is especially true in the presence of reducing agents, even at
temperatures as low as 100°C.

Since it is often desirable to use organic solvents or reagents for
the processing of this superconducting material, we have investigated the
influence of inert (nitrogen and helium), oxidizing (oxygen and air), and
reducing (organic vapors) atmospheres on producing iyreversible products.
The starting material was characterized by the hysteresis-free TGA curve in
oxygen between room temperature and 900°C, obtained after annealing the
sample in oxygen above 400°C. Reduction by organic vapors was followed as
weight loss by isothermal TGA. Similarly, the release of oxygen under
inert atmospheres was determined by dynamic thermogravimetry. The
reversibility of oxygen loss was evaluated by cycling the reduced products
in the thermobalance under pure oxygen. In addition, x-ray diffraction and

visual inspection of the solid was helpful to interpret the results.
INTRODUCTION

The importance of oxygen content of YBaQCu3Ox (1,2,3 compound) has
been demonstrated (1). While x-ray crystallography allows the
determination of various crystalline species present in preparations of
this superconducting material, thermogravimetry in different atmospheres
can also detect changes in amorphous constituents. By observing weight
changes of the 1,2,3 compound under oxidizing and reducing conditions
between ambient temperature and 950°C we have been able to detect

impurities and to evaluate the stability of the material.
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EXPERIMENTAL

The 1,2,3 compound was prepared as shown in Figure 1. Themogravimetry
was carried out with a DuPont 1090 Thermal Analyzer and a 951 Thermal
Balance. Other experimental conditions are recorded on the respective

figures.
RESULTS

On exposure to the laboratory environment, the 1,2,3 compound adsorbs
small amounts of water, combined with a small loss Iin oxygen content
(figure 2). This process is completely reversible by annealing in oxygen.
Heating the fully oxidized material in air results in oxygen loss,
particularly for high cooling rates (figure 3). For this slightly reduced
sample, recovery is complete by heating in pure oxygen (figure 4).

The dependence of oxygen content on both the partial oxygen pressure
above the sample and the temperature is demonstrated by isothermal TGA in
helium, containing a small amount of oxygen impurity (figure 5). The
temperature ranges were 140 minutes each .at 600 and 850°C. The final
weight loss of 1.2% corresponds to an oxygen stoichiometry of about 6.5.
In oxygen-free helium (figure 6), the oxygen content drops to about 06.
This loss is completely recovered by heating in oxygen atmosphere (figures
7 and 8). Figure 9 again represents an environment low in oxygen. As
shown for slightly impure helium above, here also the 1,2,3 compound acts
as a fast and efficient oxygen getter. Between 800 and 900°C a separate
reaction is apparent. It may be due to the presence of one of the phases
reported to be stable in this temperature range (3 - 4) possibly involving

a peroxide reaction with barium and complicated by any carbonate
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impurities. This "phase-out" which occurs near the O_ stoichiometry is

also completely reversible by annealing in oxygen. Figures 10 - 15
demonstrate the reproducibility of the redox cycle in helium, starting with
oxidation of the reduced sample at 500°C (the maximum oxygen uptake occurs
at 450°C), partial reduction in slightly impure helium, recovery in oxygen
and finally (figures 14 and 15) demonstrating the dependence of the final
composition on the oxygen partial pressure.

The next set of figures shows the effect of forced reduction of the
1,2,3 compound with heptane. This reduction has also been observed with
aceténe (5). In a flow of heptane-saturated helium, reduction starts near
250°C and increases rapidly (figure 16). Regeneration in oxygen undergoes
the following reactions (figure 17): At about 300°C adsorbed organics are
burnt, followed by oxidation of the 1,2,3 compound around 500°C. Beginning
at 700°C carbon is oxidized to carbonate, which is decomposed between 800
and 900°C. On cooling, the weight gain 1s characteristic for the
equilibrium of the 1,2,3 compound in oxygen. Complete reoxidation in this
case 1ls considerably more difficult than after reduction in inert gases.
Only after repeated cycling in oxygen could the sample be regenerated
{figures 18 and 19). Reduction of the 1,2,3 compound with organic

materials at temperature above about 400°C irreversibly destroys it.
CONCLUSION

It has been shown that Thermogravimetry of the 1,2.3 compound under
reducing and oxidizing conditions can be used successfully to evaluate the
purity of this superconducting material, including the presence of
non-crystalline species and especially with respect to oxygen stoichiometry

of the samples under test.
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